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Abstract: In  a  world  where  data  is  increasingly  important  for  making  breakthroughs,  microelectronics  is  a  field  where  data  is
sparse and hard to acquire.  Only a few entities have the infrastructure that is  required to automate the fabrication and testing
of  semiconductor  devices.  This  infrastructure  is  crucial  for  generating  sufficient  data  for  the  use  of  new  information  technolo-
gies.  This  situation  generates  a  cleavage  between  most  of  the  researchers  and  the  industry.  To  address  this  issue,  this  paper
will  introduce  a  widely  applicable  approach  for  creating  custom  datasets  using  simulation  tools  and  parallel  computing.  The
multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the abil-
ity to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two con-
crete  examples  of  useful  deep learning models  that  were  trained using the  generated data.  We believe  that  this  work  can act
as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device en-
gineering,  yield  engineering  or  process  monitoring.  Moreover,  this  research  gives  the  opportunity  to  anybody  to  start  experi-
menting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experi-
mentation infrastructure.
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1.  Introduction

Machine  learning  and  data  science  are  revolutionizing
many domains with techniques that manipulate data and ex-
ploit  useful  information  and  patterns.  In  recent  years  and
among  all  the  computer  science  subdomains,  the  fields  that
have  encountered  some  of  the  most  significant  advances
(e.g.,  computer  vision and natural  language processing)  have
one common aspect:  the ease for  researchers  and even ama-
teurs  to  access  training  data.  This  allows  people  to  try  vari-
ous  new  architectures,  ideas,  or  implementations,  and  it  acts
as  a  catalyst  for  the  development  of  the  concerned  field.
However,  in the case of  microelectronics,  one can hardly find
any  datasets  on  free  repositories—the  data  is  generally
sparse or non-existent. This situation creates a barrier that pre-
vents  the  field's  development  in  comparison  to  other  do-
mains.

In  response,  this  work  will  first  introduce  a  technique  to
create  datasets  related  to  semiconductor  devices  (Section  2).
We  will  then  present  two  distinct  approaches  to  use  deep
learning with the aforementioned data (Section 3). Finally, we
will  present  the  performance  of  our  framework  and  will  give
some specific examples of applications (Section 4).

We included these algorithms for two main reasons. First,

the implementation enables us  to showcase that  the genera-
tion of the data is effective and can be used in practical applic-
ations. Second, these algorithms provide examples of ways to
utilize such datasets and they give the reader all of the build-
ing  blocks  that  are  necessary  to  undertake  more  complex
projects.

The first example will show how the original device para-
meters can be found back by looking at the simulated electric-
al characteristics. This way of handling the data—from charac-
teristics  to  parameters—could  be  beneficial  in  use  cases,
such as process monitoring or fault detection.

In  the  second  example,  we  explain  how  the  simulation
parameters can be used to directly predict the results of a sim-
ulation.  This  allows  us  to  simulate  all  of  the  devices  at  more
than  9000  times  normal  speed  within  the  training  range  and
can  be  applied  widely.  Examples  of  these  applications  in-
clude  compact  modeling,  design  optimization,  and  device
design.

While machine learning and TCAD simulations have been
paired  before,  most  of  the  work  that  was  previously  presen-
ted  is  generally  used  for  specific  use  cases.  Meanwhile,  few
studies have managed to obtain good results using deep learn-
ing techniques.

In  2019,  Bankapalli et  al.  proposed a  technique that  uses
machine  learning  to  reverse  engineer  devices[1].  Their  meth-
ods  were  applied  to  1D  PIN  diodes  and  they  focused  mainly
on the prediction of parameters using the device characterist-
ics.  However,  only  artificial  intelligence  methods  nonrelated
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to  deep  learning  generated  good  results.  In  the  same  year,
Hamilton et  al.  used  neural  networks  on  Si  junctionless
nanowire transistors to predict the electrical properties of the
device[2].  However, the scope of this technique was limited to
the  use  and  the  prediction  of  figures  of  merit,  such  as  OFF-
current  and  ON-current,  subthreshold  slope,  and  voltage
threshold. Teo et al. worked on a TCAD enabled machine learn-
ing  technique  that  was  tailored  for  failure  analysis[3].  They
used  an  artificial  intelligence  technique  called  random  forest
to  solve  the  categorical  problem  related  to  the  position  of
the  defects.  In  2020,  Wong et  al.  presented  ways  to  analyze
device  variation  using  machine  learning  on  TCAD  simulation
calibrated with experimental data[4].  This work also mainly fo-
cused  on  reverse  engineering  components  using I–V curves
to obtain quantities such as work function, thickness, and dop-
ing concentration in devices. The analysis was done by prepro-
cessing  the I–V curves  using  principal  component  analysis
(PCA)  and  fitting  the  principal  components  using  3rd  order
regression.

Besides  the  previously  mentioned  papers,  works  that
combine  device  data  and  machine  learning  generally  focus
on compact models[5, 6],  were based on a few measurements,
and the scope of the models was quite limited.

In  our  work,  we  present  a  widely  generalizable  method
that  can both reverse  engineer  the device  and generate  new
devices.  It  does  not  require  extremely  rigorous  preproces-
sing,  besides  data  standardization  and  log  transformation.
Moreover,  we  applied  convolutional  neural  network  tech-
niques on multi I–V curves,  which takes all  the characteristics
of  the  device  as  a  whole.  By  not  doing dimensionality  reduc-
tion,  such  as  figures  of  merit  analysis  or  PCA  analysis,  we  al-
low  the  model  to  know  all  of  the  details  of  the  devices  and
gain precision.

2.  Data generation

This  first  section will  present  how to  build  a  dataset.  It  is
structured in three parts. Subsection 2.1 will explain how indi-
vidual devices are simulated. Subsection 2.2 presents the pro-
cess  for  simulating  multiple  devices.  Finally,  we  tackle  effi-
ciency and scalability in Subsection 2.3. The whole data genera-
tion process is illustrated in Fig. 1(a).

2.1.  Device simulation

Simulation  data  can  be  generated  by  making  use  of  the

software  Sentaurus  technology  computer-aided  design
(TCAD).  To  demonstrate  the  generalizability  of  the  method,
we  chose  to  use  two  different  combinations  of  devices  and
simulation  methods:  3D  FinFETs  using  a  structure  editor[7],
and planar MOSFETs using process simulation.

For  each  device,  before  a  simulation,  a  value  combina-
tion  of  simulation  parameters  needs  to  be  set.  These  para-
meters  will  be  the  “labels”  of  our  sample.  Meanwhile,  the
“datum” of our sample will  be the simulated device measure-
ments.  For  our  transistors,  we  chose  to  use  value  combina-
tions  of  one  to  seven  distinct  simulation  parameters,  while
up  to  five  distinct  electrical  characteristics  were  simulated.
Figs.  1(b) and 1(c) shows  examples  of  simulated  transistors;
its  caption  enumerates  several  possible  device  parameters.
Moreover,  some  examples  of  simulated  curves  are  given  in
Fig. 2, along with their name in the description.

The  devices  presented  in  this  paper  may  not  be  realistic
and may differ  from devices encountered in labs or in the in-
dustry.  This  is  especially  true  for  shorter  gate  length  devices
and  state-of-the-art  FinFETs  possessing  models  that  need  to
be  refined  and  further  tuned  with  experimental  data.
However,  one  of  the  main  goals  of  this  paper  is  to  provide  a
framework to generate the samples that are required to devel-
op  more  complicated  machine  learning  related  techniques
and design performant models.  Moreover,  the simulation can
be adapted to one's needs.

In  addition  to  the  process  parameters,  it  is  important  to
note  that  it  is  also  possible  to  input  material  parameters  and
simulation  parameters  when  generating  the  dataset.  This
type  of  dataset  can  be  used  in  applications  such  as  simula-
tion calibration.

2.2.  Process for a large number of simulations

To  efficiently  create,  run,  and  save  simulations,  Sentaur-
us was wrapped in a  Python program. This  enables  the auto-
matic  management  of  project  directories,  as  well  as  the  per-
forming of preprocessing and other tasks.

A project folder was used as the source for all of the simu-
lations.  Instead  of  exact  simulation  values,  this  project  con-
tains  placeholders  for  all  the  specifiable  values.  Before  a  new
simulation  begins,  this  folder  is  duplicated  using  a  context
manager.  Thereafter,  all  of  the  placeholders  are  filled  in  with
a  uniform,  log-uniform,  or  normal  probability  distribution.
Each simulation parameter needs to have its own statistical dis-
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Fig. 1. (Color online) (a) Diagram representing the workflow of generating the training samples. The simulations are distributed among workers
using multiprocessing. Those workers are assigned to the different cores of the CPU and executed concurrently. (b) Structure of a FinFET used
for the research. The tunable device parameters, along with their values, are: channel doping concentration (1017 cm–3), gate oxidation thickness
(1 nm), and SD doping concentration (8 × 1019 cm–3). (c) Structure of the default NMOS used for the research. The process parameters that can be
tuned as well as their default values are: N-well concentration (1017 cm–2), gate oxidation time (10 min), LDD dose (1014 cm–2) and LDD energy
(30 keV).
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tribution  parameters  because  each  simulation  parameter  can
vary  in  sensitivity  (e.g.,  gate  oxidation  time  is  more  sensitive
than the lightly doped drain (LDD) dose). Each statistical distri-
bution has  its  own features  and advantages:  normal  distribu-
tions can mimic how the parameters are distributed in real ex-
periments,  which  can  be  useful  for  generating  defect  detec-
tion algorithms; uniform distributions allow us to easily imple-
ment  mappings  between  simulation  parameters  and  device
characteristics;  while  log-uniform allows us  to  efficiently  map
a  broader  range  of  the  device  parameters.  To  avoid  conver-
gence  issues  and  extreme  values,  a  truncated  version  of  the
normal distribution was used.

It  is  worth  mentioning  here  that  because  the  simulation
time  was  the  main  bottleneck  of  the  project,  we  tried  to  use
geometrical  methods  to  optimize  the  sampling  method[8].
The goal was to generate, at each step, a device that is not sim-
ilar to any of the previously generated devices. This was done

to  reduce  the  number  of  samples  needed  to  cover  most  of
the  combinations  of  the  possible  devices.  However,  we  no-
ticed  that  the  optimized  sampling  effect  faded  from  the  mo-
ment  the  dataset  grows  in  size  (the  threshold  was  at  ~100
samples  for  a  dataset  including  devices  possessing  four  dis-
tinct  parameters).  Therefore,  this  technique only  seems to be
of  interest  for  very  small  datasets  or  experiments  with  many
distinct parameters.

After  setting up the parameters,  the simulation is  started
by  launching  the  Sentaurus  scheduler  using  Python.  When
the simulation is finished, the results are extracted from the dif-
ferent  files  and  inserted  into  the  databases.  Finally,  the  used
project folder can be deleted.

2.3.  From a single process to multiprocessing

Although looping the previously mentioned procedure is
sufficient,  generating  thousands  of  training  samples  can  be-
come  exceedingly  slow  if  the  simulated  device  is  complex  or
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Fig. 2. (Color online) Samples of a training dataset using planar NMOS. Each line represents one curve of a training sample. Five distinct NMOS
characteristics are simulated and used: (a) –  with  fixed at 0.1 and 1 V, (b) –  curves with  fixed at 1 and 2 V, and (c) the off-state
breakdown – . The voltage of the –  and –  curves does not change from simulation to simulation, they are therefore omitted from
the neural network's input. In total, 500 training samples are displayed on the plots.
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Fig. 3. (Color online) (a) Neural network architecture used for mapping the characteristics of a device to the process parameters. The 13 input chan-
nels are composed of the five current characteristics, the voltage of the off-state breakdown curve (when simulating the breakdown curve, the cur-
rent is set and the voltage is therefore variable, in contrast to the other voltage characteristics), their logarithmic counterpart as well as the index
values. (b) Scatter plots representing the values predicted by the network (y-axis) versus the actual values (x-axis). The network can accurately pre-
dict the FinFET's device parameters as long as the parameter in question has a strong enough correlation with the simulated curve. A stronger cor-
relation means higher accuracy. In total, 1000 samples are displayed on each plot. The samples were not previously seen by the network. (c) Train-
ing curves for the predictions of the parameters for different numbers of training samples. The darker curves represent the exponential moving av-
erages.
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if only low computing resources are available. To address this
issue, it is possible to use multiprocessing to run several simu-
lations  simultaneously.  Following  Amdahl's  law[9],  which  dic-
tates the potential speedup of parallel computing and depend-
ing  on  the  portion  of  the  simulation  that  cannot  be  parallel-
ized, using multiprocessing can considerably improve the simu-
lation  throughput.  With  the  setup  that  we  used  for  this  pa-
per,  splitting  the  simulations  over  four  cores  allowed  a  3.6
times increase of simulated samples per unit of time.

3.  Applying machine learning to the dataset

In machine learning, neural networks are used to map cer-
tain inputs to outputs (i.e., to predict an output based on a cer-
tain input). This is done by giving the neural networks a large
collection  of  examples  from  which  they  can  learn  to  distin-
guish patterns.  This  section will  present two distinct  practical
examples using this paradigm in combination with the gener-
ated datasets from Section 2.

The  first  algorithm  predicts  the  simulation  parameters  of
devices  solely  based  on  their  electrical  characterization.  The
second  example  algorithm  will  use  neural  networks  to  map
the  simulation  parameters  to  the  electrical  characteristics.  In
both cases,  the parameters will  be represented as a 1-dimen-
sional (1D) tensor with each element being a specific process
parameter,  such  as  oxidation  time  or  doping  concentration.
The  characteristics  are  represented  as  a  2-dimensional  (2D)
tensor  where  each  channel  (the  first  dimension)  represents
one of the electrical characteristics and each element in a chan-
nel  (the  second  dimension)  stores  a  different  data  point  of
this characteristic.

Since both the parameters and the characteristics can as-
sume a wide range of values, standardization was required to
prevent  a)  the  loss  related  to  the  biggest  output  overtaking
the  loss  of  the  smaller  outputs,  and  that  b)  the  convergence
of  the  system  would  take  an  extensive  amount  of  time.  The
mean and standard deviation for the normalization and denor-
malization were computed solely using the training dataset.

In  addition to  the  fact  that  values  can greatly  differ  from
characteristic  to  characteristic,  a  wide  range  of  values  can
also  occur  from  sample  to  sample  and  even  within  the  same
sample  (e.g.,  an  on-to-off  current  ratio  can  reach  1010).  For
both  example  algorithms,  we  use  the  logarithm  function  to
mitigate  this  effect.  In  the  first  case,  we  will  engineer  fea-
tures  by  taking  the  logarithm  of  the  different  inputs.
Moreover,  in  both  cases,  we  will  predict  the  logarithm  of  the
target  and  apply  an  exponential  function  afterwards  to  find

back the true target.
To  apply  this  transformation,  we  utilize  normalization

and  de-normalization  layers.  This  architecture  with  two  out-
puts  allows us  to  train  our  neural  networks  using normalized
data  while  directly  outputting  the  data  possessing  the  right
scale.  The loss takes three inputs:  the normalization paramet-
ers,  the  true  value,  and  the  predicted  normalized  value.  The
right  conversions  are  done  internally  and  seamlessly.  The
details  of  the  architectures  are  available  on Fig.  3(a) and
Fig. 4(a).

The  two  algorithms  were  implemented  using  Tensor-
Flow.  The  number  of  samples  is  quite  limited  (between  3000
and  20  000  samples)  in  comparison  to  classical  applications
of  deep  learning.  Therefore,  the  different  networks  were  de-
signed  to  use  fewer  trainable  parameters  to  prevent  overfit-
ting and provide a better generalization.

All of the graphs that are presented in this paper that dis-
play  predictions  of  the  network  (Fig.  5),  or  the  actual  values
versus  the  predictions  (Fig.  3(b) or Fig.  5),  use  neural  net-
works  that  are  trained  with  3000  samples  and  tested  with
1000 previously unseen samples.

Note  that  the  following  sections  discuss  the  use  of  high-
er-dimensional  data  used  as  input  or  output  of  neural  net-
works. If the figures of merit (e.g. subthreshold swing) are the
device  properties  that  need  to  be  studied,  then  it  is  possible
to  train  lighter  models  that  directly  predict  them  using
devices’ parameters.

3.1.  Prediction of the simulation parameters

The principle of the first algorithm’s implementation is to
extract features from the characteristics to predict the simula-
tion parameters.

The  architecture  that  we  used,  as  shown  in Fig.  3(a),  re-
sembles the LeNet-4[10] and was adapted to use a 1-dimension-
al tensor; its basis is constructed by alternating convolution lay-
ers and max-pooling layers to reduce the overall dimensional-
ity and increase the expression of the model.  With the aim of
reducing  the  number  of  trainable  parameters,  global  aver-
age  pooling  was  used  to  convert  2D  tensors  to  1D  tensors
while keeping a high accuracy.

Fig.  3(b) display  the  prediction  of  all  the  datapoint
present  in  the  test  set.  None  of  the  devices  present  in  the
test set were previously seen by the network. The x-axis repres-
ents  the  true  value  of  the  parameter,  while  the y-axis  repres-
ents the prediction done by the network.  The predictions are
better  when  the  points  are  closer  to  the x = y line.  We  can
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Fig. 4. (Color online) (a) Neural network architecture used for mapping the process or device parameters to its electrical characteristics. (b) Train-
ing curves for the predictions of characteristics using different numbers of training samples.
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see that the network can reverse engineer the device paramet-
ers with very high fidelity using the electrical characteristics.

To  quantify  the  performance  of  our  network,  we  com-
puted  the R2 values  for  each  device  parameter.  The R2 ex-
plains  the  correlation  between  the  actual  value  and  the  pre-
dicted  value.  It  measures  the  degree  to  which  the  independ-
ent variables explain the dependent variable.  In our case,  the
feed-forward  network  allows  us  to  explain  between  99.9%
and  98.2%  of  the  variation  of  the  parameters  of  our  FinFET
using electrical characteristics.

Note  that  the  more  a  parameter  influences  the  electrical
characteristics of the device, the easier it is to predict this para-
meter  using  the  aforementioned  characteristics.  In  the  Fin-
FET  case,  the  gate  thickness  and  the  SD  doping  concentra-
tion  are  the  parameters  that  have  the  most  influence  on  the
device.

3.2.  Prediction of the characteristics

With the second algorithm, which is described in this sub-
section,  we  map  the  simulation  parameters  of  transistors  to
their  electrical  characteristics.  This  is  more  complex  than  the
previously  explained  prediction  task  because  the  output  of
the neural network will  contain many more elements than its
input.  Therefore,  we apply a deconvolution network architec-
ture—by  using  dilation-convolution  layers—so  that  the  in-
put data is expanded and features can be extracted[11]. The ar-
chitecture  and  the  training  curves  are  shown  in Fig.  4(a) and
Fig. 4(b), respectively.

To generate smoother predicted curves, better generaliza-
tion,  and  avoid  the  neural  network  to  overfit  to  our  data,  we
explored  several  different  techniques  (dropout[12],  batch  nor-
malization[13],  etc.).  L2  regularization  was  the  most  effective
approach in this context[14].

With  a  successfully  trained  neural  network,  it  is  possible
to easily and accurately predict characteristics. Fig. 5(a) shows
a  comparison  between  the  actual  value  of  unseen  data  and
its  prediction.  The  data  chosen  for  this  Actual-versus-Predic-

tion plot were the edge cases and the data with the most ex-
treme characteristics present in the test dataset.

The characteristics of a transistor can vary over several or-
ders  of  magnitude.  It  is  therefore  difficult  to  accurately  pre-
dict  characteristics  using  only  a  linear  scale.  To  tackle  this  is-
sue,  we  predict  the  logarithm  of  the  characteristics  in  addi-
tion  to  the  raw  characteristics.  This  helps  us  to  accurately
know the properties of the devices on the whole range of cur-
rent and voltage, which enables us to accurately measure sub-
threshold  figures  of  merit  (e.g.,  the  subthreshold  swing  and
off-state current), as well as the above threshold figures of mer-
it (e.g., saturation currents).

Note that because of the high dimensionality of the data
generated,  a  meaningful  metric  to  compare  the  ground
truth—such as R2 used for  evaluating the  parameters  predic-
tion—is not readily usable for the predictions of the characte-
ristics.

Fig. 5(b) shows how the network can be utilized to gener-
ate  custom  samples.  To  give  a  perspective  of  the  perform-
ance  needed  to  obtain  accurate  results  using  the  training
curve  as  a  reference  (Fig.  4(b)),  the  MSE  of  the  network  used
to create these figures is at 4 × 10–4.

By  design,  all  of  the  samples  in  our  setup  possess  the
same set of applied voltages. Therefore, the convolution meth-
od is very well suited for the application. However, it is import-
ant  to note that  if  all  of  the samples  possess  different  abscis-
sae  for  the  characteristics,  then  it  is  possible  to  treat  each
data  point  as  a  sample  and  fit  the  voltage  at  the  same  time
as  the  desired  device  parameter.  It  is  thereafter  possible  to
generate  a  sample  by  keeping  the  parameters  constant  and
make a list  of  the desired voltages as an input.  Lei et  al.  used
this  technique  to  model  and  train  their  neural  network,  and
the method is explained in more detail in their paper[5].

3.3.  Model stacking

This  section  will  present  the  stacking  experiments  that
were  made  to  investigate  the  consistency  of  previously
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Fig.  5.  (Color  online)  (a)  Plots  representing NMOS characteristics  predicted by the network (solid line)  versus the actual  values (dotted line)  of
three samples from the validation dataset. The samples were not previously seen by the network. (b) Prediction of characteristics with three para-
meters fixed and the N-well concentration spread evenly over its range of value. The gate oxidation time, LDD Dose and LDD Energy are set at
12.5 min,  cm–2 and 30 keV, respectively.
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trained  networks.  In  Section  2,  we  trained  networks  to  pre-
dict  parameters  from the I–V curves,  and trained networks to
predict  the I–V curves  of  devices  by  feeding  the  parameters.
Now, for  both the characteristics  and the parameters,  we will
compare  the  ground  truth  and  the  same  data  fed  through
both networks.

Stacking  two  networks  is  a  scenario  that  is  similar  to  the
use of an autoencoder (Fig. 6)[15–17]. The main difference here,
however, is that when the encoder is generating characterist-
ics  from  the  parameters,  the  code  will  be  significantly  larger
than the input itself.  In principle, the main goal of an autoen-
coder  is  to  find  a  low-dimensional  representation  of  the  in-
put.

Ids Vds Ids Vgs

When  predicting  the  characteristics  using  stacked  net-
works  (Fig.  7(b)),  we  can  see  a  high  fidelity  with  the  ground
truth.  It  is  worth  mentioning  here  that  to  simulate  a  break-
down curve with TCAD, we apply a constant current and simu-
late the induced voltage drop in the device.  The voltages are
not  fixed as  opposed to the voltages in  the –  and –
curves.  This  means that we need to predict  both voltage and
current during the reconstruction, and we suffer from errors re-
lated  to  both  predictions.  The  deconstruction–reconstruction
error  of  the  off-state  breakdown  curve  is  therefore  higher.
The  quality  of  the  reconstitution  of  the  parameters  after  be-
ing  fed  through  the  stacked  networks  is  good  (Fig.  7(a)).  We
can  notice  that  parameters  possessing  a  high  coefficient  of
correlation  are  much  less  affected  by  the  deconstruction–re-
construction  loss  than  parameters  possessing  a  lower  coeffi-
cient  of  correlation.  This  phenomenon  is  strongly  linked  to
the  difficulty  to  predict  a  parameter  given  the  characteristics
and inversely.  It  is  also worth mentioning here that  cascaded
errors can be greatly amplified.

4.  Training time and inference speed

This  section  will  provide  insights  about  the  training  pro-
cedure  and  duration,  as  well  as  the  analysis  of  the  inference
process.  We  will  first  present  the  data  requirements  of  our
framework,  as  well  as  its  performance  claim.  We  will  then
present the implications of the drawbacks and advantages of
our  framework,  and  we  finish  with  possible  applications  re-
lated to those properties.

Studies regarding the number of samples that one would
need for the neural network to learn an accurate model have
been  done  and  exposed  in Fig.  8 and Fig.  9.  To  give  an  in-

sight  into  the  meaning  of  the  accuracy  present  on  the
graphs,  a model possessing a loss value of  5 × 10–4 was used
to generate Fig.  5.  The more parameters  that  are  considered,
the  more  training  samples  need  to  be  fed  in.  Moreover,  we
can  see  on Fig.  8 that  the  range  of  those  parameters  have
also  a  great  impact  on  the  amount  of  data  required.  Note
that  to  have  more  conspicuous  results,  the  device  paramet-
ers  simulated for  this  work have wide distributions.  However,
for process monitoring applications, these parameters distribu-
tions would be much narrower.

To train a  network that  can predict  with high precision a
device  characteristic,  one  would  need  a  dataset  containing
between 500 to 1000 devices, depending on the number and
the  range  of  the  input  parameters.  The  average  duration  to
simulate  an  NMOS  using  process  simulation  and  a  3D  FinFET
using  a  structure  editor  are  219  and  368  s,  respectively.
Without  multiprocessing,  if  all  the  simulations  are  done  con-
secutively,  this  is  equivalent  to  30  to  100  h,  which  can  be
sped up using multiprocessing. Note that the simulation time
to  generate  the  dataset  can  be  much  longer  for  complex
devices, such as a state-of-the-art FinFET using process simula-
tion.  In  addition  to  the  simulation  time,  several  hours  are  re-
quired to train the feedforward neural networks.

In  the case of  the FinFET,  the prediction of  a  device's  full
set  of  characteristics  required  40.8  ms  on  average,  as  op-
posed to 368 s when using the simulation software. This differ-
ence represents a speed increase of up to 9000 times.

It  could  be  argued  that  this  speed  increase  is  only  valid
after  the  simulations  and  the  training  is  completed,  which
can  be  extensive.  However,  the  main  goal  of  this  paper  is  to
provide  a  framework  to  apply  advanced  techniques  on
device  data.  We will  therefore  present  the  two main  types  of
techniques we are interested in, as well as their constraints.

The  first  group  of  targeted  techniques  is  reinforcement
learning  (RL)  based  algorithms.  RL  is  a  feedback-based  tech-
nique in  which an agent  learns  to  behave in  an environment
by performing actions and seeing the results of its actions. Its
primary goal  is  to  maximize the cumulative rewards  during a
sequence  of  steps  in  an  environment.  An  agent  can  there-
fore  learn  how  to  do  certain  tasks.  In  our  case,  those  tasks
can be (for example) monitoring the processes during semicon-
ductor  fabrication  or  optimize  the  selection  of  wafers  that
will be measured.

One  of  the  main  drawbacks  of  RL-based  techniques  is
the sheer amount of data needed to train those agents. For ex-
ample,  actor-critic  RL  algorithms  that  treat  continuous  action
space  such  as  twin  delayed  deep  deterministic  policy  gradi-
ents  (TD3),  asynchronous advantage actor-critic  (A3C),  or  soft
actor-critic  (SAC)  can  need  up  to  hundreds  of  thousands  and
even  millions  of  training  steps  (in  our  case,  device  simula-
tions) to be trained[18−20]. Moreover, algorithms used in produc-
tion have stricter requirements, the learning procedure needs
to be steady and the agents need to be extremely robust and
predictable  when  acting.  Training  those  safe  agents,  such  as
trust region policy optimization (TRPO), or proximal policy op-
timization  (PPO),  is  often  even  more  expensive  in  terms  of
data[21, 22].

Our  framework  can  be  used  in  such  context  to  generate
all  the  data  needed  by  those  algorithms,  as  well  as  testing
the trained agent with carefully crafted critical situations.

The  second  type  of  technique  is  related  to  unsupervised
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input and the output while encoding the data.
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learning (UL). UL is a field that allows us to learn patterns and
structure from untagged data.  An example of  research linked
with  our  framework  could  be  to  undergo  experiments  using
variational  auto-encoder  (VAE)[23].  This  sort  of  autoencoder
can be used to predict the probability of certain events occur-
ring,  or  the distribution of  the data in a latent space.  One ex-
ample  could  be  the  study  of  the  underlying  distribution  of
the device parameters versus the “goodness” of the device in
different  situations  (using  data  generated  by  our  network).

Such  a  study  could  help  to  avoid  dangerous/unstable  re-
gions  of  parameters  or  prevent  certain  device  faults  alto-
gether.

Another  UL application example is  to  use  our  framework
to  train  algorithms,  such  as  generative  adversarial  network
(GAN)[24].  By  generating  faulty  and  healthy  devices,  we  can
train networks to categorize/discriminate different faults.  This
can  pinpoint  processes  at  risk,  help  the  system  to  regulate
the  processes,  or  help  dynamically  manage  the  measure-
ment frequency where and when it is the most needed.

One of  the particularities  of  UL techniques  is  the import-
ance  of  the  distribution  of  the  data  as  a  whole.  In  our  case,
not  only  is  the  generation  of  the  characteristics  important
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Fig. 7. (Color online) (a) Scatter plots representing the values predicted (y-axis) versus the actual values (x-axis). The black dots are the values pre-
dicted by the network using the true characteristics as input. The red dots are the values obtained by first predicting the characteristics from the
parameters, and then predicting the parameters from the characteristics. The grey lines represent the ground truth. Coefficients of determina-
tion correspond to the scatter plot of their color. A stronger correlation means higher accuracy. In total, 1000 samples are displayed on each plot.
The samples were not previously seen by networks. (b) Plots representing NMOS characteristics predicted by the network (solid line) versus the ac-
tual values (dotted line) of three samples from the validation dataset. The characteristics were predicted by first predicting parameters using the
characteristics, then using those parameters to predict the characteristics.
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but  so  is  the  underlying  distribution  of  these  characteristics
(in our case, the distribution of the device parameters).  When
studying  a  process,  it  would  not  be  practical  to  generate  a
training  dataset  each  time  that  it  is  needed  to  tweak  (for  ex-
ample)  the  mean  or  the  standard  deviation  of  a  parameter.
Moreover,  the  algorithm  would  be  affected  if  a  sampling
would be done directly using the dataset.

In this work, we generated datasets using uniform distribu-
tions.  We  can  therefore  train  a  feed-forward  network  using
them  and  then  sample  devices  that  follow  specific  paramet-
ers distributions by inputting these distributions into our mod-
els. This essentially solves the issue related to the data require-
ments of UL algorithms.

The framework described in this paper allows us to gener-
ate  the  characteristics  and  reverse  engineer  the  parameters
with  very  high  flexibility.  The  training  can  require  a  lot  of
time  and  computation.  However,  after  the  training  is  com-
pleted,  the  time  to  generate  device  characteristics  is  close  to
zero.  These  drawbacks  quickly  fade  away  when  the  frame-
work  is  associated  with  other  techniques.  Thus,  end-to-end
complex and robust systems with real-life applications can be
designed  using  one  or  a  combination  of  these  techniques  in
tandem with our framework.

5.  Conclusion

This  paper  has  presented  a  practical  and  novel  tech-
nique for creating custom datasets that allows machine learn-
ing to be applied to device simulation. Our datasets were gen-
erated  using  parallel  computing  and  multiprocessing.  The
multi I–V data  obtained  from  the  simulations  were  simultan-
eously  processed  using  convolutional  neural  networks  with
the goal to predict device characteristics from device paramet-
ers,  and  vice  versa.  Through  two  concrete  examples  of  neur-
al  network-based  learning  algorithms,  we  have  shown  that
such datasets can bring tremendous value to real-world applic-
ations.  Examples  of  techniques  that  can  be  applied  to  such
datasets  include  and  are  not  limited  to:  data  vision,  anomaly
detection,  supervised  learning,  or  adversarial  machine  learn-
ing.  Simulation  time  can  be  significantly  decreased.  Con-
sequently,  smart  search  algorithms  could  also  be  applied  to
achieve  ultra-fast  device  optimization.  Finally,  it  becomes  tr-
actable  to  simulate  complete  semiconductor  manufacturing
processes  so  that  there  is  no  more  need  for  any  expensive
equipment when researching algorithms for process monitor-
ing or device engineering. This technique can be applied to a
wide  range  of  extremely  diverse  tasks  and  can  be  tailored  to
specific needs.
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