

Framework for TCAD augmented machine learning on multi- I–V
characteristics using convolutional neural network and
multiprocessing

Thomas Hirtz1, Steyn Huurman2, He Tian1, †, Yi Yang1, and Tian-Ling Ren1

1Institute of Microelectronics, Tsinghua University, Beijing 100084, China
2Department of Computer Science, Tsinghua University, Beijing 100084, China

Abstract: In a world where data is increasingly important for making breakthroughs, microelectronics is a field where data is
sparse and hard to acquire. Only a few entities have the infrastructure that is required to automate the fabrication and testing
of semiconductor devices. This infrastructure is crucial for generating sufficient data for the use of new information technolo-
gies. This situation generates a cleavage between most of the researchers and the industry. To address this issue, this paper
will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing. The
multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the abil-
ity to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two con-
crete examples of useful deep learning models that were trained using the generated data. We believe that this work can act
as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device en-
gineering, yield engineering or process monitoring. Moreover, this research gives the opportunity to anybody to start experi-
menting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experi-
mentation infrastructure.

Key words: machine learning; neural networks; semiconductor devices; simulation

Citation: T Hirtz, S Huurman, H Tian, Y Yang, and T L Ren, Framework for TCAD augmented machine learning on multi- I– V
characteristics using convolutional neural network and multiprocessing[J]. J. Semicond., 2021, 42(12), 124101. http://doi.org/
10.1088/1674-4926/42/12/124101

1. Introduction

Machine learning and data science are revolutionizing
many domains with techniques that manipulate data and ex-
ploit useful information and patterns. In recent years and
among all the computer science subdomains, the fields that
have encountered some of the most significant advances
(e.g., computer vision and natural language processing) have
one common aspect: the ease for researchers and even ama-
teurs to access training data. This allows people to try vari-
ous new architectures, ideas, or implementations, and it acts
as a catalyst for the development of the concerned field.
However, in the case of microelectronics, one can hardly find
any datasets on free repositories—the data is generally
sparse or non-existent. This situation creates a barrier that pre-
vents the field's development in comparison to other do-
mains.

In response, this work will first introduce a technique to
create datasets related to semiconductor devices (Section 2).
We will then present two distinct approaches to use deep
learning with the aforementioned data (Section 3). Finally, we
will present the performance of our framework and will give
some specific examples of applications (Section 4).

We included these algorithms for two main reasons. First,

the implementation enables us to showcase that the genera-
tion of the data is effective and can be used in practical applic-
ations. Second, these algorithms provide examples of ways to
utilize such datasets and they give the reader all of the build-
ing blocks that are necessary to undertake more complex
projects.

The first example will show how the original device para-
meters can be found back by looking at the simulated electric-
al characteristics. This way of handling the data—from charac-
teristics to parameters—could be beneficial in use cases,
such as process monitoring or fault detection.

In the second example, we explain how the simulation
parameters can be used to directly predict the results of a sim-
ulation. This allows us to simulate all of the devices at more
than 9000 times normal speed within the training range and
can be applied widely. Examples of these applications in-
clude compact modeling, design optimization, and device
design.

While machine learning and TCAD simulations have been
paired before, most of the work that was previously presen-
ted is generally used for specific use cases. Meanwhile, few
studies have managed to obtain good results using deep learn-
ing techniques.

In 2019, Bankapalli et al. proposed a technique that uses
machine learning to reverse engineer devices[1]. Their meth-
ods were applied to 1D PIN diodes and they focused mainly
on the prediction of parameters using the device characterist-
ics. However, only artificial intelligence methods nonrelated

Correspondence to: H Tian, tianhe88@tsinghua.edu.cn
Received 6 APRIL 2021; Revised 22 JUNE 2021.

©2021 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2021) 42, 124101

doi: 10.1088/1674-4926/42/12/124101

http://dx.doi.org/10.1088/1674-4926/42/12/124101
http://dx.doi.org/10.1088/1674-4926/42/12/124101
mailto:tianhe88@tsinghua.edu.cn

to deep learning generated good results. In the same year,
Hamilton et al. used neural networks on Si junctionless
nanowire transistors to predict the electrical properties of the
device[2]. However, the scope of this technique was limited to
the use and the prediction of figures of merit, such as OFF-
current and ON-current, subthreshold slope, and voltage
threshold. Teo et al. worked on a TCAD enabled machine learn-
ing technique that was tailored for failure analysis[3]. They
used an artificial intelligence technique called random forest
to solve the categorical problem related to the position of
the defects. In 2020, Wong et al. presented ways to analyze
device variation using machine learning on TCAD simulation
calibrated with experimental data[4]. This work also mainly fo-
cused on reverse engineering components using I–V curves
to obtain quantities such as work function, thickness, and dop-
ing concentration in devices. The analysis was done by prepro-
cessing the I–V curves using principal component analysis
(PCA) and fitting the principal components using 3rd order
regression.

Besides the previously mentioned papers, works that
combine device data and machine learning generally focus
on compact models[5, 6], were based on a few measurements,
and the scope of the models was quite limited.

In our work, we present a widely generalizable method
that can both reverse engineer the device and generate new
devices. It does not require extremely rigorous preproces-
sing, besides data standardization and log transformation.
Moreover, we applied convolutional neural network tech-
niques on multi I–V curves, which takes all the characteristics
of the device as a whole. By not doing dimensionality reduc-
tion, such as figures of merit analysis or PCA analysis, we al-
low the model to know all of the details of the devices and
gain precision.

2. Data generation

This first section will present how to build a dataset. It is
structured in three parts. Subsection 2.1 will explain how indi-
vidual devices are simulated. Subsection 2.2 presents the pro-
cess for simulating multiple devices. Finally, we tackle effi-
ciency and scalability in Subsection 2.3. The whole data genera-
tion process is illustrated in Fig. 1(a).

2.1. Device simulation

Simulation data can be generated by making use of the

software Sentaurus technology computer-aided design
(TCAD). To demonstrate the generalizability of the method,
we chose to use two different combinations of devices and
simulation methods: 3D FinFETs using a structure editor[7],
and planar MOSFETs using process simulation.

For each device, before a simulation, a value combina-
tion of simulation parameters needs to be set. These para-
meters will be the “labels” of our sample. Meanwhile, the
“datum” of our sample will be the simulated device measure-
ments. For our transistors, we chose to use value combina-
tions of one to seven distinct simulation parameters, while
up to five distinct electrical characteristics were simulated.
Figs. 1(b) and 1(c) shows examples of simulated transistors;
its caption enumerates several possible device parameters.
Moreover, some examples of simulated curves are given in
Fig. 2, along with their name in the description.

The devices presented in this paper may not be realistic
and may differ from devices encountered in labs or in the in-
dustry. This is especially true for shorter gate length devices
and state-of-the-art FinFETs possessing models that need to
be refined and further tuned with experimental data.
However, one of the main goals of this paper is to provide a
framework to generate the samples that are required to devel-
op more complicated machine learning related techniques
and design performant models. Moreover, the simulation can
be adapted to one's needs.

In addition to the process parameters, it is important to
note that it is also possible to input material parameters and
simulation parameters when generating the dataset. This
type of dataset can be used in applications such as simula-
tion calibration.

2.2. Process for a large number of simulations

To efficiently create, run, and save simulations, Sentaur-
us was wrapped in a Python program. This enables the auto-
matic management of project directories, as well as the per-
forming of preprocessing and other tasks.

A project folder was used as the source for all of the simu-
lations. Instead of exact simulation values, this project con-
tains placeholders for all the specifiable values. Before a new
simulation begins, this folder is duplicated using a context
manager. Thereafter, all of the placeholders are filled in with
a uniform, log-uniform, or normal probability distribution.
Each simulation parameter needs to have its own statistical dis-

Process manager

Simulation context manager Simulation context manager

Setup & Teardown Setup & Teardown

Project folders Project folders

Simulation Simulation

Data preprocessing Data preprocessing

Simulation

results

Process 1 Process N

Setup simulation parametersSetup simulation parameters

x y

z

−0.2

−0.3

−0.1

−0.2

0

−0.1

0.1

0
0.2

0.1 0.2

y
(μ

m
)

x (μm)

Net active (cm−3)

3.23e + 20

9.58e + 16

2.84e + 13

−2.97e + 13

−1.00e + 17

(a) (b) (c)

Fig. 1. (Color online) (a) Diagram representing the workflow of generating the training samples. The simulations are distributed among workers
using multiprocessing. Those workers are assigned to the different cores of the CPU and executed concurrently. (b) Structure of a FinFET used
for the research. The tunable device parameters, along with their values, are: channel doping concentration (1017 cm–3), gate oxidation thickness
(1 nm), and SD doping concentration (8 × 1019 cm–3). (c) Structure of the default NMOS used for the research. The process parameters that can be
tuned as well as their default values are: N-well concentration (1017 cm–2), gate oxidation time (10 min), LDD dose (1014 cm–2) and LDD energy
(30 keV).

2 Journal of Semiconductors doi: 10.1088/1674-4926/42/12/124101

T Hirtz et al.: Framework for TCAD augmented machine learning on multi- I–V characteristics

tribution parameters because each simulation parameter can
vary in sensitivity (e.g., gate oxidation time is more sensitive
than the lightly doped drain (LDD) dose). Each statistical distri-
bution has its own features and advantages: normal distribu-
tions can mimic how the parameters are distributed in real ex-
periments, which can be useful for generating defect detec-
tion algorithms; uniform distributions allow us to easily imple-
ment mappings between simulation parameters and device
characteristics; while log-uniform allows us to efficiently map
a broader range of the device parameters. To avoid conver-
gence issues and extreme values, a truncated version of the
normal distribution was used.

It is worth mentioning here that because the simulation
time was the main bottleneck of the project, we tried to use
geometrical methods to optimize the sampling method[8].
The goal was to generate, at each step, a device that is not sim-
ilar to any of the previously generated devices. This was done

to reduce the number of samples needed to cover most of
the combinations of the possible devices. However, we no-
ticed that the optimized sampling effect faded from the mo-
ment the dataset grows in size (the threshold was at ~100
samples for a dataset including devices possessing four dis-
tinct parameters). Therefore, this technique only seems to be
of interest for very small datasets or experiments with many
distinct parameters.

After setting up the parameters, the simulation is started
by launching the Sentaurus scheduler using Python. When
the simulation is finished, the results are extracted from the dif-
ferent files and inserted into the databases. Finally, the used
project folder can be deleted.

2.3. From a single process to multiprocessing

Although looping the previously mentioned procedure is
sufficient, generating thousands of training samples can be-
come exceedingly slow if the simulated device is complex or

0.20

0.5

0.15

1.0

0.10

1.5

0.05

2.0

0

D
ra

in
 c

u
rr

e
n

t
(m

A
)

Gate voltage (V)

Vds = 0.1 V

Vds = 1 V

(a) 0.25

0.20

0.15

0.50 1.0 1.5 2.0

0.10

0.05

0

D
ra

in
 c

u
rr

e
n

t
(m

A
)

Drain voltage (V)

Vgs = 2 V

Vgs = 1 V

(b)
0.10

5

0.08

6

0.06

7

0.04

8

0.02

9

0

D
ra

in
 c

u
rr

e
n

t
(m

A
)

Drain voltage (V)

(c)

Ids Vgs Vds Ids Vds Vgs
Ids Vds Ids Vgs Ids Vgs

Fig. 2. (Color online) Samples of a training dataset using planar NMOS. Each line represents one curve of a training sample. Five distinct NMOS
characteristics are simulated and used: (a) – with fixed at 0.1 and 1 V, (b) – curves with fixed at 1 and 2 V, and (c) the off-state
breakdown – . The voltage of the – and – curves does not change from simulation to simulation, they are therefore omitted from
the neural network's input. In total, 500 training samples are displayed on the plots.

(B
at

ch
 si

ze
×

13
 ×

 5
0)

N
or

m
al

iz
at

io
n

la
ye

r

Co
nv

ol
ut

io
n

1D

Ba
tc

h
no

rm
al

iz
at

io
n

M
ax

 p
oo

lin
g

1D
si

ze
 =

 2
, s

tr
id

es
 =

 2

Co
nv

ol
ut

io
n

1D

Ba
tc

h
no

rm
al

iz
at

io
n

M
ax

 p
oo

lin
g

1D
si

ze
 =

 2
, s

tr
id

es
 =

 2

Co
nv

ol
ut

io
n

1D

Ba
tc

h
no

rm
al

iz
at

io
n

G
lo

ba
l a

ve
ra

ge
 p

oo
lin

g

D
en

se

D
ro

po
ut

D
en

se
un

its
 =

 3
D

en
or

m
al

iz
at

io
n

la
ye

r

O
ut

pu
t

(B
at

ch
 s

iz
e

×
3)

Loss

1.4

0.75

1.2

1.00

1.0

1.25

0.8

0.6

Pr
ed

ic
te

d

Actual

Gate thickness (nm)

1.2

0.5

1.0

0.8

0.8

1.1

0.6

0.4

Pr
ed

ic
te

d

Actual ×1020

×1020
concentration (cm−3)

1.50

0.5

1.25

1.0

1.00

1.5

0.75

0.50

Pr
ed

ic
te

d

Actual ×1017

×1017
concentration (cm−3)

100

10−1

10−2

0 200 400 600 800 1000

M
ea

n
sq

ua
re

d
er

ro
r

Epochs

100 samples
200 samples
300 samples
500 samples
1000 samples
2000 samples

(a)

(b)

(c)

R2 = 0.999 R2 = 0.999 R2 = 0.982

un
its

 =
 2

00
, l

in
ea

r

SD doping Channel doping

In
pu

t

Fig. 3. (Color online) (a) Neural network architecture used for mapping the characteristics of a device to the process parameters. The 13 input chan-
nels are composed of the five current characteristics, the voltage of the off-state breakdown curve (when simulating the breakdown curve, the cur-
rent is set and the voltage is therefore variable, in contrast to the other voltage characteristics), their logarithmic counterpart as well as the index
values. (b) Scatter plots representing the values predicted by the network (y-axis) versus the actual values (x-axis). The network can accurately pre-
dict the FinFET's device parameters as long as the parameter in question has a strong enough correlation with the simulated curve. A stronger cor-
relation means higher accuracy. In total, 1000 samples are displayed on each plot. The samples were not previously seen by the network. (c) Train-
ing curves for the predictions of the parameters for different numbers of training samples. The darker curves represent the exponential moving av-
erages.

Journal of Semiconductors doi: 10.1088/1674-4926/42/12/124101 3

T Hirtz et al.: Framework for TCAD augmented machine learning on multi- I–V characteristics

if only low computing resources are available. To address this
issue, it is possible to use multiprocessing to run several simu-
lations simultaneously. Following Amdahl's law[9], which dic-
tates the potential speedup of parallel computing and depend-
ing on the portion of the simulation that cannot be parallel-
ized, using multiprocessing can considerably improve the simu-
lation throughput. With the setup that we used for this pa-
per, splitting the simulations over four cores allowed a 3.6
times increase of simulated samples per unit of time.

3. Applying machine learning to the dataset

In machine learning, neural networks are used to map cer-
tain inputs to outputs (i.e., to predict an output based on a cer-
tain input). This is done by giving the neural networks a large
collection of examples from which they can learn to distin-
guish patterns. This section will present two distinct practical
examples using this paradigm in combination with the gener-
ated datasets from Section 2.

The first algorithm predicts the simulation parameters of
devices solely based on their electrical characterization. The
second example algorithm will use neural networks to map
the simulation parameters to the electrical characteristics. In
both cases, the parameters will be represented as a 1-dimen-
sional (1D) tensor with each element being a specific process
parameter, such as oxidation time or doping concentration.
The characteristics are represented as a 2-dimensional (2D)
tensor where each channel (the first dimension) represents
one of the electrical characteristics and each element in a chan-
nel (the second dimension) stores a different data point of
this characteristic.

Since both the parameters and the characteristics can as-
sume a wide range of values, standardization was required to
prevent a) the loss related to the biggest output overtaking
the loss of the smaller outputs, and that b) the convergence
of the system would take an extensive amount of time. The
mean and standard deviation for the normalization and denor-
malization were computed solely using the training dataset.

In addition to the fact that values can greatly differ from
characteristic to characteristic, a wide range of values can
also occur from sample to sample and even within the same
sample (e.g., an on-to-off current ratio can reach 1010). For
both example algorithms, we use the logarithm function to
mitigate this effect. In the first case, we will engineer fea-
tures by taking the logarithm of the different inputs.
Moreover, in both cases, we will predict the logarithm of the
target and apply an exponential function afterwards to find

back the true target.
To apply this transformation, we utilize normalization

and de-normalization layers. This architecture with two out-
puts allows us to train our neural networks using normalized
data while directly outputting the data possessing the right
scale. The loss takes three inputs: the normalization paramet-
ers, the true value, and the predicted normalized value. The
right conversions are done internally and seamlessly. The
details of the architectures are available on Fig. 3(a) and
Fig. 4(a).

The two algorithms were implemented using Tensor-
Flow. The number of samples is quite limited (between 3000
and 20 000 samples) in comparison to classical applications
of deep learning. Therefore, the different networks were de-
signed to use fewer trainable parameters to prevent overfit-
ting and provide a better generalization.

All of the graphs that are presented in this paper that dis-
play predictions of the network (Fig. 5), or the actual values
versus the predictions (Fig. 3(b) or Fig. 5), use neural net-
works that are trained with 3000 samples and tested with
1000 previously unseen samples.

Note that the following sections discuss the use of high-
er-dimensional data used as input or output of neural net-
works. If the figures of merit (e.g. subthreshold swing) are the
device properties that need to be studied, then it is possible
to train lighter models that directly predict them using
devices’ parameters.

3.1. Prediction of the simulation parameters

The principle of the first algorithm’s implementation is to
extract features from the characteristics to predict the simula-
tion parameters.

The architecture that we used, as shown in Fig. 3(a), re-
sembles the LeNet-4[10] and was adapted to use a 1-dimension-
al tensor; its basis is constructed by alternating convolution lay-
ers and max-pooling layers to reduce the overall dimensional-
ity and increase the expression of the model. With the aim of
reducing the number of trainable parameters, global aver-
age pooling was used to convert 2D tensors to 1D tensors
while keeping a high accuracy.

Fig. 3(b) display the prediction of all the datapoint
present in the test set. None of the devices present in the
test set were previously seen by the network. The x-axis repres-
ents the true value of the parameter, while the y-axis repres-
ents the prediction done by the network. The predictions are
better when the points are closer to the x = y line. We can

0 200 400 600 800 1000

100

10−1

10−2

10−3

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r 100 samples

200 samples

300 samples

500 samples

1000 samples

2000 samples

Epochs

(b)

In
p

u
t

N
o

rm
a

liz
a

ti
o

n

la
y

e
r

D
e

n
se

u
n

it
s

=
 2

5
6

R
e

sh
a

p
e

U
p

sa
m

p
lin

g
 1

D

si
ze

 =
 2

C
o

n
v

o
lu

ti
o

n
 1

D
 s

iz
e

 =
 3

,

U
p

sa
m

p
lin

g
 1

D

si
ze

=
2

C
o

n
v

o
lu

ti
o

n
 1

D
 s

iz
e

 =
 3

,

U
p

sa
m

p
lin

g
 1

D

si
ze

 =
 2

C
o

n
v

o
lu

ti
o

n
 1

D
 S

iz
e

 =
 3

,

U
p

sa
m

p
lin

g
 1

D

si
ze

 =
 2

O
u

tp
u

t

D
e

n
o

rm
a

liz
a

ti
o

n

la
y

e
r

C
o

n
v

o
lu

ti
o

n
 1

D

Loss
(a)

fi
lt

e
r

=
 1

6
, L

2
 =

 1
e

 −
 5

, R
e

L
U

(B
a

tc
h

 s
iz

e
 ×

 1
3

 ×
 5

0
)

(B
at

ch
 s

iz
e

×
3)

(B
at

ch
 s

iz
e

×
4

×
64

)

Fig. 4. (Color online) (a) Neural network architecture used for mapping the process or device parameters to its electrical characteristics. (b) Train-
ing curves for the predictions of characteristics using different numbers of training samples.

4 Journal of Semiconductors doi: 10.1088/1674-4926/42/12/124101

T Hirtz et al.: Framework for TCAD augmented machine learning on multi- I–V characteristics

see that the network can reverse engineer the device paramet-
ers with very high fidelity using the electrical characteristics.

To quantify the performance of our network, we com-
puted the R2 values for each device parameter. The R2 ex-
plains the correlation between the actual value and the pre-
dicted value. It measures the degree to which the independ-
ent variables explain the dependent variable. In our case, the
feed-forward network allows us to explain between 99.9%
and 98.2% of the variation of the parameters of our FinFET
using electrical characteristics.

Note that the more a parameter influences the electrical
characteristics of the device, the easier it is to predict this para-
meter using the aforementioned characteristics. In the Fin-
FET case, the gate thickness and the SD doping concentra-
tion are the parameters that have the most influence on the
device.

3.2. Prediction of the characteristics

With the second algorithm, which is described in this sub-
section, we map the simulation parameters of transistors to
their electrical characteristics. This is more complex than the
previously explained prediction task because the output of
the neural network will contain many more elements than its
input. Therefore, we apply a deconvolution network architec-
ture—by using dilation-convolution layers—so that the in-
put data is expanded and features can be extracted[11]. The ar-
chitecture and the training curves are shown in Fig. 4(a) and
Fig. 4(b), respectively.

To generate smoother predicted curves, better generaliza-
tion, and avoid the neural network to overfit to our data, we
explored several different techniques (dropout[12], batch nor-
malization[13], etc.). L2 regularization was the most effective
approach in this context[14].

With a successfully trained neural network, it is possible
to easily and accurately predict characteristics. Fig. 5(a) shows
a comparison between the actual value of unseen data and
its prediction. The data chosen for this Actual-versus-Predic-

tion plot were the edge cases and the data with the most ex-
treme characteristics present in the test dataset.

The characteristics of a transistor can vary over several or-
ders of magnitude. It is therefore difficult to accurately pre-
dict characteristics using only a linear scale. To tackle this is-
sue, we predict the logarithm of the characteristics in addi-
tion to the raw characteristics. This helps us to accurately
know the properties of the devices on the whole range of cur-
rent and voltage, which enables us to accurately measure sub-
threshold figures of merit (e.g., the subthreshold swing and
off-state current), as well as the above threshold figures of mer-
it (e.g., saturation currents).

Note that because of the high dimensionality of the data
generated, a meaningful metric to compare the ground
truth—such as R2 used for evaluating the parameters predic-
tion—is not readily usable for the predictions of the characte-
ristics.

Fig. 5(b) shows how the network can be utilized to gener-
ate custom samples. To give a perspective of the perform-
ance needed to obtain accurate results using the training
curve as a reference (Fig. 4(b)), the MSE of the network used
to create these figures is at 4 × 10–4.

By design, all of the samples in our setup possess the
same set of applied voltages. Therefore, the convolution meth-
od is very well suited for the application. However, it is import-
ant to note that if all of the samples possess different abscis-
sae for the characteristics, then it is possible to treat each
data point as a sample and fit the voltage at the same time
as the desired device parameter. It is thereafter possible to
generate a sample by keeping the parameters constant and
make a list of the desired voltages as an input. Lei et al. used
this technique to model and train their neural network, and
the method is explained in more detail in their paper[5].

3.3. Model stacking

This section will present the stacking experiments that
were made to investigate the consistency of previously

0.175

0.5

0.100

6

0.15
0.20 0.10

0.150

1.0

0.075

7

0.10

0.15
0.08

0.125

1.5

0.050

8

6 7 8

0.05

0.10

0.06

0.100

2.0

0.025

9

0

0.05

0.04

0.075

0

0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0

0

0.02

0.050

0

0.025

0

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0

D
ra

in
 c

u
rr

e
n

t
(m

A
)

D
ra

in
 c

u
rr

e
n

t
(m

A
)

D
ra

in
 c

u
rr

e
n

t
(m

A
)

D
ra

in
 c

u
rr

e
n

t
(m

A
)

D
ra

in
 c

u
rr

e
n

t
(m

A
)

D
ra

in
 c

u
rr

e
n

t
(m

A
)

Gate voltage (V)

0.5 1.0 1.5 2.0

Gate voltage (V)

Drain voltage (V)

Drain voltage (V) Drain voltage (V)

Drain voltage (V)

Ids−Vgs Ids−Vds Ids−Vds

Ids−Vgs Ids−Vds Ids−Vds

Predicted n°1
Predicted n°2
Predicted n°3
Actual n°1
Actual n°2
Actual n°3

Vds = 1 V

Vds = 1 V

Vds = 0.1 V

Vgs = 2 V

Vgs = 1 V

Vgs = 2 V

Vgs = 1 V

Vds = 0.1 V

2.00

1.75

1.50

1.25

1.00

(a)

(b)

1
7

N
-w

e
ll

 d
o

se
 (

1
0

 c
m

−
2
)

. ×

Fig. 5. (Color online) (a) Plots representing NMOS characteristics predicted by the network (solid line) versus the actual values (dotted line) of
three samples from the validation dataset. The samples were not previously seen by the network. (b) Prediction of characteristics with three para-
meters fixed and the N-well concentration spread evenly over its range of value. The gate oxidation time, LDD Dose and LDD Energy are set at
12.5 min, cm–2 and 30 keV, respectively.

Journal of Semiconductors doi: 10.1088/1674-4926/42/12/124101 5

T Hirtz et al.: Framework for TCAD augmented machine learning on multi- I–V characteristics

trained networks. In Section 2, we trained networks to pre-
dict parameters from the I–V curves, and trained networks to
predict the I–V curves of devices by feeding the parameters.
Now, for both the characteristics and the parameters, we will
compare the ground truth and the same data fed through
both networks.

Stacking two networks is a scenario that is similar to the
use of an autoencoder (Fig. 6)[15–17]. The main difference here,
however, is that when the encoder is generating characterist-
ics from the parameters, the code will be significantly larger
than the input itself. In principle, the main goal of an autoen-
coder is to find a low-dimensional representation of the in-
put.

Ids Vds Ids Vgs

When predicting the characteristics using stacked net-
works (Fig. 7(b)), we can see a high fidelity with the ground
truth. It is worth mentioning here that to simulate a break-
down curve with TCAD, we apply a constant current and simu-
late the induced voltage drop in the device. The voltages are
not fixed as opposed to the voltages in the – and –
curves. This means that we need to predict both voltage and
current during the reconstruction, and we suffer from errors re-
lated to both predictions. The deconstruction–reconstruction
error of the off-state breakdown curve is therefore higher.
The quality of the reconstitution of the parameters after be-
ing fed through the stacked networks is good (Fig. 7(a)). We
can notice that parameters possessing a high coefficient of
correlation are much less affected by the deconstruction–re-
construction loss than parameters possessing a lower coeffi-
cient of correlation. This phenomenon is strongly linked to
the difficulty to predict a parameter given the characteristics
and inversely. It is also worth mentioning here that cascaded
errors can be greatly amplified.

4. Training time and inference speed

This section will provide insights about the training pro-
cedure and duration, as well as the analysis of the inference
process. We will first present the data requirements of our
framework, as well as its performance claim. We will then
present the implications of the drawbacks and advantages of
our framework, and we finish with possible applications re-
lated to those properties.

Studies regarding the number of samples that one would
need for the neural network to learn an accurate model have
been done and exposed in Fig. 8 and Fig. 9. To give an in-

sight into the meaning of the accuracy present on the
graphs, a model possessing a loss value of 5 × 10–4 was used
to generate Fig. 5. The more parameters that are considered,
the more training samples need to be fed in. Moreover, we
can see on Fig. 8 that the range of those parameters have
also a great impact on the amount of data required. Note
that to have more conspicuous results, the device paramet-
ers simulated for this work have wide distributions. However,
for process monitoring applications, these parameters distribu-
tions would be much narrower.

To train a network that can predict with high precision a
device characteristic, one would need a dataset containing
between 500 to 1000 devices, depending on the number and
the range of the input parameters. The average duration to
simulate an NMOS using process simulation and a 3D FinFET
using a structure editor are 219 and 368 s, respectively.
Without multiprocessing, if all the simulations are done con-
secutively, this is equivalent to 30 to 100 h, which can be
sped up using multiprocessing. Note that the simulation time
to generate the dataset can be much longer for complex
devices, such as a state-of-the-art FinFET using process simula-
tion. In addition to the simulation time, several hours are re-
quired to train the feedforward neural networks.

In the case of the FinFET, the prediction of a device's full
set of characteristics required 40.8 ms on average, as op-
posed to 368 s when using the simulation software. This differ-
ence represents a speed increase of up to 9000 times.

It could be argued that this speed increase is only valid
after the simulations and the training is completed, which
can be extensive. However, the main goal of this paper is to
provide a framework to apply advanced techniques on
device data. We will therefore present the two main types of
techniques we are interested in, as well as their constraints.

The first group of targeted techniques is reinforcement
learning (RL) based algorithms. RL is a feedback-based tech-
nique in which an agent learns to behave in an environment
by performing actions and seeing the results of its actions. Its
primary goal is to maximize the cumulative rewards during a
sequence of steps in an environment. An agent can there-
fore learn how to do certain tasks. In our case, those tasks
can be (for example) monitoring the processes during semicon-
ductor fabrication or optimize the selection of wafers that
will be measured.

One of the main drawbacks of RL-based techniques is
the sheer amount of data needed to train those agents. For ex-
ample, actor-critic RL algorithms that treat continuous action
space such as twin delayed deep deterministic policy gradi-
ents (TD3), asynchronous advantage actor-critic (A3C), or soft
actor-critic (SAC) can need up to hundreds of thousands and
even millions of training steps (in our case, device simula-
tions) to be trained[18−20]. Moreover, algorithms used in produc-
tion have stricter requirements, the learning procedure needs
to be steady and the agents need to be extremely robust and
predictable when acting. Training those safe agents, such as
trust region policy optimization (TRPO), or proximal policy op-
timization (PPO), is often even more expensive in terms of
data[21, 22].

Our framework can be used in such context to generate
all the data needed by those algorithms, as well as testing
the trained agent with carefully crafted critical situations.

The second type of technique is related to unsupervised

X X
^Y

Neural
network
encoder

Neural
network
decoder

X

Y

X̂

Fig. 6. Structure of a classical autoencoder. The input () is feed into
an encoder network to get the code (). The input can be then recon-
structed () using a decoder network. The goal is to train the encoder
and the decoder to have the minimum distance possible between the
input and the output while encoding the data.

6 Journal of Semiconductors doi: 10.1088/1674-4926/42/12/124101

T Hirtz et al.: Framework for TCAD augmented machine learning on multi- I–V characteristics

learning (UL). UL is a field that allows us to learn patterns and
structure from untagged data. An example of research linked
with our framework could be to undergo experiments using
variational auto-encoder (VAE)[23]. This sort of autoencoder
can be used to predict the probability of certain events occur-
ring, or the distribution of the data in a latent space. One ex-
ample could be the study of the underlying distribution of
the device parameters versus the “goodness” of the device in
different situations (using data generated by our network).

Such a study could help to avoid dangerous/unstable re-
gions of parameters or prevent certain device faults alto-
gether.

Another UL application example is to use our framework
to train algorithms, such as generative adversarial network
(GAN)[24]. By generating faulty and healthy devices, we can
train networks to categorize/discriminate different faults. This
can pinpoint processes at risk, help the system to regulate
the processes, or help dynamically manage the measure-
ment frequency where and when it is the most needed.

One of the particularities of UL techniques is the import-
ance of the distribution of the data as a whole. In our case,
not only is the generation of the characteristics important

2.0

1.0

1.5

1.5

1.0

2.0

P
re

d
ic

te
d

Actual × 1017

× 1017 N-well dose (cm−2)

R2 = 0.998
R2 = 0.998

10 12 14

15

14

13

12

10

11

P
re

d
ic

te
d

Actual

Gate oxidation time (min)

R2 = 0.995
R2 = 0.997

2.0

1.5

1.0

0.5
1.0 1.5 2.0

P
re

d
ic

te
d

Actual

× 1014

× 1014

LDD dose (cm−2)

R2 = 0.851
R2 = 0.932

40

20

35

30

30

40

25

20

P
re

d
ic

te
d

Actual

LDD energy (keV)

R2 = 0.853
R2 = 0.927

0.100

5

0.075

6

0.050

7

0.025

8
0

9

D
ra

in
 c

u
rr

e
n

t
(m

A
)

Drain voltage (V)

Off-state breakdown Ids−Vds

0 1.00.5 1.5 2.0

10−2

10−5

10−8

10−11

D
ra

in
 c

u
rr

e
n

t
(m

A
)

Gate voltage (V)

Ids−Vgs

Predicted n°1
Predicted n°2
Predicted n°3
Actual n°1
Actual n°2
Actual n°3

Vds = 1 V

0 1.00.5 1.5 2.0

10−1

10−2

10−3

D
ra

in
 c

u
rr

e
n

t
(m

A
)

Drain voltage (V)

Ids−Vds

Vgs = 2 V

Vgs = 1 V

(a)

(b)

Fig. 7. (Color online) (a) Scatter plots representing the values predicted (y-axis) versus the actual values (x-axis). The black dots are the values pre-
dicted by the network using the true characteristics as input. The red dots are the values obtained by first predicting the characteristics from the
parameters, and then predicting the parameters from the characteristics. The grey lines represent the ground truth. Coefficients of determina-
tion correspond to the scatter plot of their color. A stronger correlation means higher accuracy. In total, 1000 samples are displayed on each plot.
The samples were not previously seen by networks. (b) Plots representing NMOS characteristics predicted by the network (solid line) versus the ac-
tual values (dotted line) of three samples from the validation dataset. The characteristics were predicted by first predicting parameters using the
characteristics, then using those parameters to predict the characteristics.

Parameters Mean Range 1 Range 2 Range 3

N-well (cm−2)

Gate ox. (min)

LDD dose (cm−2)

1.5 × 1017

15

1.5 × 1014

0.25

0.10

0.375

0.150

0.375

0.5

0.2

0.50.25

2 × 10−3

1 × 10−3

5 × 10−4

2 × 10−4

100 300 500 1000 1500 2000

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r Range n°1

Range n°2
Range n°3

Samples

(a)

(b)

Fig. 8. (Color online) (a) Study of the neural network loss when predict-
ing characteristics. Several numbers of samples and ranges have been
tested. The curves are averaged over seven sets of training for 2000
epochs. (b) The statistical parameters used for the study. The process
parameter ranges are uniform distributions bounded by: Mean × (1 ±
Sigma).

2 × 10−3

1 × 10−3

5 × 10−4

2 × 10−4

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

100 300 500 1000 1500 2000

Samples

1 Parameter
2 Parameters
3 Parameters
4 Parameters

Fig. 9. (Color online) Neural network loss for predicting characteristics
versus the numbers of samples used for training. The different curves
represent the number of parameters that are randomized when gener-
ating the training set (e.g., for the “1 Parameter” curve, all the paramet-
ers except the N-well concentration are fixed). The parameters were ad-
ded in the following order: N-well concentration, gate oxidation time,
LDD dose, and LDD energy. The curves are averaged over seven sets
of training for 2000 epochs.

Journal of Semiconductors doi: 10.1088/1674-4926/42/12/124101 7

T Hirtz et al.: Framework for TCAD augmented machine learning on multi- I–V characteristics

but so is the underlying distribution of these characteristics
(in our case, the distribution of the device parameters). When
studying a process, it would not be practical to generate a
training dataset each time that it is needed to tweak (for ex-
ample) the mean or the standard deviation of a parameter.
Moreover, the algorithm would be affected if a sampling
would be done directly using the dataset.

In this work, we generated datasets using uniform distribu-
tions. We can therefore train a feed-forward network using
them and then sample devices that follow specific paramet-
ers distributions by inputting these distributions into our mod-
els. This essentially solves the issue related to the data require-
ments of UL algorithms.

The framework described in this paper allows us to gener-
ate the characteristics and reverse engineer the parameters
with very high flexibility. The training can require a lot of
time and computation. However, after the training is com-
pleted, the time to generate device characteristics is close to
zero. These drawbacks quickly fade away when the frame-
work is associated with other techniques. Thus, end-to-end
complex and robust systems with real-life applications can be
designed using one or a combination of these techniques in
tandem with our framework.

5. Conclusion

This paper has presented a practical and novel tech-
nique for creating custom datasets that allows machine learn-
ing to be applied to device simulation. Our datasets were gen-
erated using parallel computing and multiprocessing. The
multi I–V data obtained from the simulations were simultan-
eously processed using convolutional neural networks with
the goal to predict device characteristics from device paramet-
ers, and vice versa. Through two concrete examples of neur-
al network-based learning algorithms, we have shown that
such datasets can bring tremendous value to real-world applic-
ations. Examples of techniques that can be applied to such
datasets include and are not limited to: data vision, anomaly
detection, supervised learning, or adversarial machine learn-
ing. Simulation time can be significantly decreased. Con-
sequently, smart search algorithms could also be applied to
achieve ultra-fast device optimization. Finally, it becomes tr-
actable to simulate complete semiconductor manufacturing
processes so that there is no more need for any expensive
equipment when researching algorithms for process monitor-
ing or device engineering. This technique can be applied to a
wide range of extremely diverse tasks and can be tailored to
specific needs.

References

Bankapalli Y S, Wong H Y. TCAD augmented machine learning for
semiconductor device failure troubleshooting and reverse engin-
eering. 2019 International Conference on Simulation of Semicon-
ductor Processes and Devices (SISPAD), 2019, 1

[1]

Carrillo-Nuñez H, Dimitrova N, Asenov A, et al. Machine learning
approach for predicting the effect of statistical variability in Si junc-
tionless nanowire transistors. IEEE Electron Device Lett, 2019, 40,
1366

[2]

Teo C W, Low K L, Narang V, et al. TCAD-enabled machine learn-
ing defect prediction to accelerate advanced semiconductor
device failure analysis. 2019 International Conference on Simula-

[3]

tion of Semiconductor Processes and Devices (SISPAD), 2019, 1
Wong H Y, Xiao M, Wang B Y, et al. TCAD-machine learning frame-
work for device variation and operating temperature analysis
with experimental demonstration. IEEE J Electron Devices Soc,
2020, 8, 992

[4]

Lei Y, Huo X, Yan B P. Deep neural network for device modeling.
2018 IEEE 2nd Electron Devices Technology and Manufacturing
Conference (EDTM), 2018, 154

[5]

Hammouda H B, Mhiri M, Gafsi Z, et al. Neural-based models of
semiconductor devices for SPICE simulator. Am J Appl Sci, 2008,
5, 385

[6]

Wu Y C, Jhan Y R. 3D TCAD simulation for CMOS nanoeletronic
devices. Singapore: Springer Singapore, 2018

[7]

Aurenhammer F. Voronoi diagrams—a survey of a fundamental
geometric data structure. ACM Comput Surv, 1991, 23, 345

[8]

Amdahl G M. Validity of the single processor approach to achiev-
ing large scale computing capabilities. Spring Joint Computer Con-
ference on - AFIPS '67, 1967, 483

[9]

Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning ap-
plied to document recognition. Proc IEEE, 1998, 86, 2278

[10]

Yu F, Koltun V. Multi-scale context aggregation by dilated convolu-
tions. arXiv preprint arXiv: 1511.07122, 2015

[11]

Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way
to prevent neural networks from overfitting. J Mach Learn Res,
2014, 15, 1929

[12]

Ioffe S, Szegedy C. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint
arXiv: 1502.03167, 2015

[13]

Ng A Y. Feature selection, L1 vs. L2 regularization, and rotational in-
variance. Twenty-First International Conference on Machine Learn-
ing - ICML '04, 2004, 78

[14]

Rumelhart D E, Hinton G E, Williams R J. Learning internal repres-
entations by error propagation. Cambridge, MA, USA: MIT Press,
1986, 318

[15]

Hinton G E, Salakhutdinov R R. Reducing the dimensionality of
data with neural networks. Science, 2006, 313, 504

[16]

Vincent P, Larochelle H, Bengio Y, et al. Extracting and compos-
ing robust features with denoising autoencoders. Proceedings of
the 25th International Conference on Machine Learning - ICML
'08, 2008, 1096

[17]

Fujimoto S, van Hoof H, Meger D. Addressing function approxima-
tion error in actor-critic methods. Proceedings of the 35th Interna-
tional Conference on Machine Learning, 2018, 1587

[18]

Mnih V, Badia A P, Mirza M, et al. Asynchronous methods for
deep reinforcement learning. International Conference on Ma-
chine Learning, 2016, 1928

[19]

Haarnoja T, Zhou A, Hartikainen K, et al. Soft actor-critic al-
gorithms and applications. arXiv preprint arXiv: 1812.05905, 2018

[20]

Schulman J, Levine S, Moritz P, et al. Trust region policy optimiza-
tion. arXiv preprint arxiv: 1502.05477, 2015

[21]

Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017

[22]

Kingma D P, Welling M. Auto-encoding variational bayes. arXiv pre-
print arXiv: 1312.6114, 2014

[23]

Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversari-
al networks. Commun ACM, 2020, 63, 139

[24]

Thomas Hirtz received his M.S. degree from
the National Institute of Applied Science of
Rennes in 2017. He is currently working to-
wards a Ph.D. in Electronic Science and Techno-
logy at the Institute of Microelectronics,
Tsinghua University. His research interests in-
clude reinforcement learning and applica-
tions of machine learning techniques in the do-
main of physics and electronics.

8 Journal of Semiconductors doi: 10.1088/1674-4926/42/12/124101

T Hirtz et al.: Framework for TCAD augmented machine learning on multi- I–V characteristics

http://dx.doi.org/10.1109/LED.2019.2931839
http://dx.doi.org/10.1109/LED.2019.2931839
http://dx.doi.org/10.1109/JEDS.2020.3024669
http://dx.doi.org/10.1109/JEDS.2020.3024669
http://dx.doi.org/10.3844/ajassp.2008.385.391
http://dx.doi.org/10.3844/ajassp.2008.385.391
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1109/LED.2019.2931839
http://dx.doi.org/10.1109/LED.2019.2931839
http://dx.doi.org/10.1109/JEDS.2020.3024669
http://dx.doi.org/10.1109/JEDS.2020.3024669
http://dx.doi.org/10.3844/ajassp.2008.385.391
http://dx.doi.org/10.3844/ajassp.2008.385.391
http://dx.doi.org/10.1145/116873.116880
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1145/3422622

He Tian received the Ph.D. degree from the In-
stitute of Microelectronics, Tsinghua Uni-
versity, in 2015. He is currently an associate pro-
fessor in Tsinghua University. He was a recipi-
ent of the National Science Foundation for out-
standing young scholars. He has co-authored
over 100 papers and has over 6000 citations.
He has been researching on various 2D materi-
al-based novel nanodevices.

Journal of Semiconductors doi: 10.1088/1674-4926/42/12/124101 9

T Hirtz et al.: Framework for TCAD augmented machine learning on multi- I–V characteristics

	1 Introduction
	2 Data generation
	2.1 Device simulation
	2.2 Process for a large number of simulations
	2.3 From a single process to multiprocessing

	3 Applying machine learning to the dataset
	3.1 Prediction of the simulation parameters
	3.2 Prediction of the characteristics
	3.3 Model stacking

	4 Training time and inference speed
	5 Conclusion

